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Abstract

The objective of this paper is to formulate the governing equation of a cantilever bimorph beam
associated with a tip mass in contact with a viscoelastic material, which is modeled by a stiffness and a
damper in parallel. From the eigenvalue problem, we can obtain the resonant frequencies as functions of
the tip mass and material stiffness. The relation between the spectrum and material damping is established
by the half-power bandwidth. It is found that the resonant frequencies increase as the material stiffness
increases or the tip mass decreases, and the spectrum decreases by increasing the damping. From the
analytic results, a cantilever could provide a technique to assess material viscoelasticity by simple
measurements of the resonant frequency and the spectrum. Since the cantilever’s behavior scales with its
geometry, the device can be designed specifically for mechanical measurement of a microscopic system such
as living cells and biomaterials.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

As the precision science develops allegro, the door is opened to the microcosm, i.e. the world of
atomic. The scanning tunneling microscope, atomic force microscope (AFM) and their offshoots
are the important keys [1] to open the door and they are referred to as the scanning probe
see front matter r 2005 Elsevier Ltd. All rights reserved.
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microscope. The atomic force between the microcantilever tip and sample is employed during the
process of measurement. The AFM, with its ability to image surface on the nanometer scale,
offers the potential to measure directly the viscoelasticity of living cells and biomaterials. Some
important observations of the AFM were made from the governing equations and boundary
conditions [2].
In recent years, mechanical devices using piezoelectric effects have drawn much attention both

scientifically and technologically, because a piezoelectric actuator is able to control a micrometer
displacement accurately and quickly. The microcantilevers have made it possible to build new
sensors, which are simple, compact and easy to operate, for measuring magnetic susceptibilities of
nanogram materials [3], the swelling or volume expansion experienced by an active sensing
material [4], the solution pH [5], material damping [6] and Young’s modulus [7].
This paper studies the dynamic behavior of a stepped piezoelectric cantilever beam, which is

composed of two piezoelectric layers and one sandwiched nickel layer. The dynamic formulation
based on the general concept of constitutive laws of piezoelectric material [8] is derived by
Hamilton’s principle. In order to obtain the relations of resonant frequencies with respect to the
tip mass and material stiffness, the eigenvalue problem is solved. Some observations from
the governing equations, transition conditions, continuous conditions and boundary conditions
are discussed. Finally, the numerical method using the finite element method is provided to
illustrate the dynamic responses and their spectrum for the piezoelectric cantilever bimorph
beams. Consequentially, the material stiffness can be obtained from the eigenvalue problem
and the material damper can be calculated from the half-power bandwidth of the frequency
spectrum.
2. Dynamic model development

2.1. Physical model

The system model shown in Fig. 1 is a parallel connection of the piezoelectric bimorph beam.
The two piezoelectric layers are used as the actuator. The directions of big arrows represent the
polarization directions of the piezoelectric layers. For the microcantilever beam, the slenderness
ratio is very small, and Euler-beam theory is suitable to describe its behavior. First of all,
Hamilton’s principle [9,10] will be employed to derive the equations off motion for the
piezoelectric bimorph system.

2.2. Equations of motion

In order to formulate the equations of motion, the cantilever beam is divided into two regions:
the triple-layer beam 0oxo‘p and the nickel beam ‘poxo‘b. The subscripts p and b are denoted
for the piezoceramic bimorph and the nickel beam, respectively. The cantilever is a flexible beam
with length ‘b, width wb and thickness tb. The tip mass is a pyramid rigid segment with height h,
thickness 2‘ and width w. The unknown material stiffness and damping coefficient are assumed as
k and c, respectively. The tip mass could be in another sense of describing the equivalent mass of
material stiffness, which is assumed massless in the dynamic modeling. The distance between the
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Fig. 1. Schematic diagrams: (a) the piezoelectric cantilever bimorph beam; (b) the deformed configuration.
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point Q and the geometric center H is e. The oxz coordinate system is employed to describe the
planar motion. The electric field and applied voltage direct along the z-axis.
2.3. Kinetic and strain energies

The neutral-axis displacements of an arbitrary point A of the piezoelectric cantilever beam are

u1ðx; z; tÞ ¼ �zvxðx; tÞ; u3ðx; z; tÞ ¼ vðx; tÞ, (1)

where vðx; tÞ represents the transverse displacement. The subscript x represents the spatial
derivative. The position vector after deformation is

RAðx; z; tÞ ¼ ½x� zvxðx; tÞ�iþ ½zþ vðx; tÞ�k. (2)

The deformed position vector of the mass center point H is

RHðx; z; tÞ ¼ ð‘b þ lÞiþ ½zþ vð‘b; tÞ þ ‘vxð‘b; tÞ � e�k. (3)

Therefore, the total kinetic energy of the cantilever system including the tip mass can be expressed as

T ¼
1
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¼
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2, ð4Þ

where rA ¼ rpAp þ rbAb; rpAp ¼ rpApjupper þ rpApjlower; r is the mass density, A is the total
cross-sectional area of the triple-layer beam, Ap ¼ wptp and Ab ¼ wbtb. The subscript t represents the
time derivative. It is noted that the piezoelectric term with subscript p exists only for the region
0oxo‘p and the electric field has no influence on the region ‘poxo‘b. In Eq. (4), the rotary inertia
is neglected for the Euler-beam assumption.
The Lagrangian strains of the piezoelectric cantilever beam are

�b11 ¼ �p11 ¼ �zvxx; �b12 ¼ �p12 ¼ 0; �b13 ¼ �b31 ¼ �p13 ¼ �p31 ¼ 0. (5)

If an electrical field E3 is applied across the thickness direction of the piezoelectric bimorph with
parallel polarity, the constitutive equations for these two piezoelectric layers will be

The upper layer:
sp11

E3upper

" #
¼

Ep �h31

�h31 b33

" #
�p11

D33

" #
, (6)

The lower layer:
sp11

E3lower

" #
¼

Ep �h31

�h31 b33

" #
�p11

�D33

" #
, (7)

where D33 and Ep are the electrical displacement and Young’s modulus of the piezoelectric layers
along the z-direction, respectively; �p11 and sp11 are the mechanical strain and stress in the
x-direction, respectively. E3upper and E3lower are the electric fields applied to the upper and lower
piezoelectric layers, respectively. b33 is the dielectric constant and h31 is the piezoelectric constant.
The potential energy of the cantilever bimorph beam including the material stiffness attached at

the tip mass is

U ¼ Up þUb þUk
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where EA ¼ EpAp þ EbAb, EI ¼ EpIp þ EbIb, Ip ¼
R

Ap
z2 dAp, Ib ¼

R
Ab

z2 dAb, and Eb is the
Young’s modulus of the cantilever nickel beam.
The virtual work done by the electrical voltage Vcc, the material damping c and the initially

normal force f acting on the tip is

dW ¼ 2

Z ‘p

0

VccwpdD33ðx; tÞdxþ f f � c½vtð‘b; tÞ þ ‘vxtð‘b; tÞ�gd½vð‘b; tÞ þ ‘vxð‘b; tÞ�. (9)

2.4. Hamilton’s principle

By using Hamilton’s principle [9,10]Z t2

t1

½dðT �UÞ þ dW �dt ¼ 0, (10)

we obtain the governing equations for each region of the piezoelectric cantilever bimorph beam:

vi : riAivitt þ EiI ivixxxx ¼ 0,

i ¼ 1 for 0oxo‘p and i ¼ 2 for ‘poxo‘b, ð11a;bÞ

D33 : �ðtp þ 2tbÞAph31v1xx þ 2Vccwp � 2Apb33D33 ¼ 0; 0oxo‘p, (11c)

where r1A1 ¼ rpAp þ rbAb, r2A2 ¼ rbAb, E1I1 ¼ EpIp þ EbIb and E2I2 ¼ EbIb.
The boundary conditions at x ¼ 0 and ‘b are

x ¼ 0:

v1ð0; tÞ ¼ 0; v1xð0; tÞ ¼ 0,

x ¼ ‘b:

m½v2ttð‘b; tÞ þ ‘v2xttð‘b; tÞ� þ c½vtð‘b; tÞ þ ‘vxtð‘b; tÞ� þ k½v2ð‘b; tÞ þ ‘v2xð‘b; tÞ�

� EbIbv2xxxð‘b; tÞ ¼ f , ð12a;bÞ

m‘½v2ttð‘b; tÞ þ ‘v2xttð‘b; tÞ� þ c‘½vtð‘b; tÞ þ ‘vxtð‘b; tÞ� þ k‘½v2ð‘b; tÞ þ ‘v2xð‘b; tÞ�

þ EbIbv2xxð‘b; tÞ ¼ f ‘. ð12c;dÞ

From Eq. (11c), we have the electric displacement

D33 ¼
2Vccwp � ðtp þ 2tbÞAph31v1xx

2Apb33
, (13)

which is caused by the external voltage Vcc and the curvature v1xx. By using Eq. (13) for the
two adjacent regions, 0oxo‘p and ‘poxo‘b, from Eq. (10) we have the transition conditions
at x ¼ ‘p:

E2I2v2xxxð‘
þ
p ; tÞ ¼ E1I1v1xxxð‘

�
p ; tÞ, (14a)

E2I2v2xxð‘
þ
p ; tÞ � E1I1 �

h2
31Apðtp þ 2tbÞ

2

4b33

" #
v1xxð‘

�
p ; tÞ ¼

1

2
mv, (14b)
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where mv ¼ ðtp þ 2tbÞh31Vccwp=b33 is the moment induced by the external voltage Vcc. In the
manipulation of Eq. (14), we have used the following continuous conditions:

v1ð‘
�
p ; tÞ ¼ v2ð‘

þ
p ; tÞ, (15)

v1xð‘
�
p ; tÞ ¼ v2xð‘

þ
p ; tÞ. (16)

2.5. Discussion

From the governing equations (11a,b), boundary conditions (12a–d) and transition conditions
(14a, b) of the system, the following observations are made:
(1)
 The governing equations (11a,b) for the transverse displacements are homogeneous.
Transition condition (14a) describes the continuity of the shear force. The applied voltage
Vcc becomes an external moment, and appears in the transition condition (14b). The moment
causes the jump of bending curvature at the point x ¼ ‘p.
(2)
 When an electric filed is applied to the two parallel piezoelectric layers of the cantilever beam,
the upper layer expands but the lower layer contracts along the length direction. This will
produce a pure bending moment and is mathematically seen from Eq. (14b).
(3)
 The piezoelectric bimorph is suitable to actuate the cantilever beam because that only the
bending moment mv is produced by the applied voltage. Based on the Euler beam’s
assumption, the beam is bent and the length of the neutral axis remains unchanged when an
external voltage is applied.
(4)
 Under the external voltage, the piezoelectric cantilever bimorph beam produces a pure
bending deformation. Such a model is feasible to be designed as a measuring device, which is
affixed as tip mass at the free end and is shown in Fig. 1.
2.6. Eigenvalue problem

For the convenience in search of the behavior of the system parameter, we define the following
dimensionless variables and parameters:

V1 ¼
v1

‘b

; V2 ¼
v2

‘b

; x ¼
x

‘b

; m ¼
‘p

‘b

; t ¼ oT t; L ¼
‘

‘b

; Mv ¼
mv

EbIb

,

M ¼
m

rbAb‘b

; K ¼
k‘3b

EbIb

; C̄ ¼
c‘b

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rbAbEbIb

p ; F ¼
f

rbAb‘
2
bo

2
T

; o2
T ¼

p4EbIb

rbAb‘
4
b

.

Substituting them into Eqs. (11a,b) and (12a–d), we have the dimensionless governing equation

ai

d4Viðx; tÞ

dx4
þ bip4

d2Viðx; tÞ
dt2

¼ 0; i ¼ 1 for 0oxom and i ¼ 2 for moxo1, (17)

where

a1 ¼
EpIp þ EbIb

EbIb

; b1 ¼
rpAp þ rbAb

rbAb

and a2 ¼ b2 ¼ 1.
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The continuous conditions become

V1ðm�; tÞ ¼ V2ðmþ; tÞ, (18)

V1xðm�; tÞ ¼ V2xðmþ; tÞ. (19)

The transition conditions become

a1V1xxxðm�; tÞ � V2xxxðmþ; tÞ ¼ 0, (20)

�gV1xxðm�; tÞ þ V2xxðmþ; tÞ ¼ 1
2

Mv, (21)

where

g ¼ a1 �
h231Apðtp þ 2tbÞ

2

4b33EbIb

.

The boundary conditions become

V1ð0; tÞ ¼ 0; V1xð0; tÞ ¼ 0, (22, 23)

M½V2ttð1; tÞ þ LV 2xttð1; tÞ� þ C̄½V2tð1; tÞ þ LV 2xtð1; tÞ�

þ
K

p4
½V2ð1; tÞ þ LV 2xð1; tÞ� �

1

p4
V2xxxð1; tÞ ¼ F , ð24Þ

ML½V2ttð1; tÞ þ LV 2xttð1; tÞ� þ C̄L½V2tð1; tÞ þ LV 2xtð1; tÞ�

þ
1

p4
KL½V2ð1; tÞ þ LV 2xð1; tÞ� þ

1

p4
V2xxð1; tÞ ¼ FL. ð25Þ

In order to obtain the eigenvalue problem, the damping C̄, the initially normal force F and the
bending moment Mv are neglected in this section. For the discrete systems, we explore the
circumstance under which the motion of the beam is synchronous [10]. In mathematical
terminology, such a solution Viðx; tÞ of the boundary-value problem (17) and Eqs. (22–25), is said
to be separable in the spatial variable x and the time t, and can be expressed in the form

Viðx; tÞ ¼ FiðxÞTðtÞ; i ¼ 1; 2, (26)

where FiðxÞ represents the beam shape, and is a function of x alone, and TðtÞ indicates how the
amplitude varies with time t.
By using the method of separation of variables, we have the following boundary value problem:

d2

dx2
d2FiðxÞ

dx2

� �
� b4i FiðxÞ ¼ 0; 0oxo1, (27)

where b4i ¼ ðp
4bi=aiÞo2; i ¼ 1; 2, and the solution must satisfy the boundary conditions (22–25). It

is noted that one natural frequency o and two eigenvalues b1 and b2 exist in this problem of the
cantilever beam being divided into two regions.
Inserting Eq. (26) into Eqs. (18–25) and dividing by TðtÞ, the continuous conditions (18, 19),

transition conditions (20, 21) and boundary conditions (22–25) reduce to

F1ðm�Þ ¼ F2ðmþÞ, (28)
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F1xðm�Þ ¼ F2xðmþÞ, (29)

a1F1xxxðm�Þ ¼ F2xxxðmþÞ, (30)

F2xxðmþÞ � gF1xxðm�Þ ¼ 0, (31)

F1ð0Þ ¼ 0;
dF1ð0Þ

dx
¼ 0, (32, 33)

d

dx
d2F2ð1Þ

dx2

� �
� K F2ð1Þ þ L

dF2ð1Þ

dx

� �� �
þ b42M F2ð1Þ þ L

dF2ð1Þ

dx

� �� �
¼ 0, (34)

d2F2ð1Þ

dx2
þ KL F2ð1Þ þ L

dF2ð1Þ

dx

� �� �
� b42 ML F2ð1Þ þ L

dF2ð1Þ

dx

� �� �
¼ 0. (35)

The problem of determining the constant o2 such that Eq. (27) admits nontrivial solutions FiðxÞ
satisfying conditions (28)–(35) is known as the differential eigenvalue problem [10].
The solution of Eq. (27) can be verified as

FiðxÞ ¼ Ai sin bixþ Bi cosbixþ Ci sinhbixþDi cosh bix, (36)

where Ai, Bi, Ci and Di, i ¼ 1; 2 are constants to be determined by using conditions (28–35). The
detailed results can be seen in Appendix A.
By using conditions (28–35), we can obtain the characteristic equation for bi:

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

2
6664

3
7775

A2

B2

C2

D2

2
6664

3
7775 ¼ 0, (37)

where aij ; i; j ¼ 1; 2; . . . ; 4 are detailed in Ref. [11]. The characteristic Eq. (37) will be employed to
determine the resonant frequencies with respect to the different material stiffnesses and various
values of tip masses.
By using the determinant jaijj ¼ 0; i; j ¼ 1; 2; . . . ; 4 of the characteristic Eq. (37), rather than

using the relationship between the exciting frequency and the tip displacement [12], we could
obtain the relationship between the eigenvalue and the material stiffness. The detailed procedure
of calculating the material stiffness can be seen in Section 5.2.

2.7. Comparison

As the tip mass is neglected in Ref. [12], the numerical result is larger than the experimental
data, because the resonant frequency decreases by increasing the tip mass. This paper proposes
the complete analysis of the relationship between the resonant frequencies with the material
stiffnesses and the tip masses.
If the two piezoelectric layers, the damper and tip mass are neglected, the characteristic Eq. (37)

is the same as that in Ref. [13] by neglecting the length extending from the spring to the free end.
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If the two piezoelectric layers, the damper and material stiffness are neglected, the characteristic
Eq. (37) is the same as that of Ref. [14].

2.8. A simple case and sensitivity analysis

In addition, if the two piezoelectric layers are neglected, we can obtain the closed-form
characteristic equation for b:

1þ cos b cosh b

sin b cosh b� sinh b cos bþ 2bL sin b sinh bþ ðbLÞ2ðcos b sinh bþ cosh b sin bÞ

¼ �
K � b4M

b3
. ð38Þ

If ‘bb‘, we have L � 0, and the above characteristic equation becomes

1þ cos b cosh b
sin b cosh b� sinh b cos b

¼ �
K � b4M

b3
. (39)

The above characteristic Eq. (39) will be employed to determine numerically the first and second
resonant frequencies with respect to the different material stiffnesses and various values of tip masses.
Differentiating Eq. (39) with respect to b, and inversing the results, we obtain the derivative of b

with respect to K by treating dM=db ¼ 0, and the derivative of b with respect to M by treating
dK=db ¼ 0. Thus, the first-order sensitivity analysis can be written as follows:

db
dK
¼ ðsin b cosh b� sinh b cos bÞ2=½4b3Mðsin b cosh b� sinh b cos bÞ2

� 3b2ð1þ cos b cosh bÞðsin b cosh b� sinh b cos bÞ

þ b3ðsin2 b cosh2 bþ sinh2 b cos2 bþ 2 sin b sinh bÞ�, ð40Þ

db
dM
¼ � b5ðsin b cosh b� sinh b cos bÞ2=½4Kðsin b cosh b� sinh b cos bÞ

þ b3ð1þ cos b cosh bÞðsin b cosh b� sinh b cos bÞ

þ b4ðsin2 b cosh2 bþ sinh2 b cos2 bþ 2 sin b sinhbÞ�. ð41Þ
3. Damping determination from half-power bandwidth

One common method [15,16] of determining damping ratio is to measure the spectrum
bandwidth between points on the response curve, for which the response is some fraction of the
resonance spectrum of the system. In this paper, the half-power bandwidth of the frequency
spectrum is adopted to determine the material damping ratio.
Consider the viscous damping system shown in Fig. 1(a). The magnification factor (MF) can be

obtained in the following relation:

MF ¼ f½1� ðoc=orÞ
2
�2 þ 4z2g�1=2, (42)
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where or is the frequency of maximum amplitude and oc is the circular frequency of vibration. It
is easily seen that the MF is a function of only two parameters: the frequency ratio ðoc=orÞ and
the damping ratio ðzÞ.
The resonant magnification factor (RMF) is defined as the value of the MF at resonance. Thus,

the half-power magnification factor (HPMF) with the power being one-half of that at resonance is
related to the damping ratio as follows [15]:

HPMF ¼ RMF=
ffiffiffi
2
p
¼ 2

ffiffiffi
2
p

z
� ��1

. (43)

Combining Eqs. (42) and (43), the two half-power frequencies (oð1Þr and oð2Þr ) corresponding to
half-power could be obtained as

oð1Þ;ð2Þr ¼ orð1� 2zÞ1=2. (44)

For small damping ratio ðz51=2Þ, the above equation could be simple as

oð1Þ;ð2Þr � orð1� zÞ. (45)

Thus, we get the following relation between the dimensionless bandwidth and the damping ratio:

oð2Þr � oð1Þr

or

� 2z. (46)

4. Finite element method

By using the standard finite element technique [17] and assembling the equation of motion, we
obtain a set of ordinary differential equations for the piezoelectric cantilever bimorph beam:

M €Qþ C _Qþ KQ ¼ F, (47)

where Q is the global displacement vector, M, C and K are the global mass, damping and stiffness
matrices, respectively, F is a force vector which includes the external voltage VccðtÞ and the
initially normal force f , and

Q ¼ ½q1 � � � qn � � � q2n�
T1� 2n, (48)

M ¼
Xn

j¼1

2rA

Z ‘p

0

NT
j Nj dxþ 2rbAb

Z ‘b

‘p

NT
j Nj dx

þmfNð‘bÞ
TNð‘bÞ þ ‘½Nð‘bÞ

TBð‘bÞ þ Bð‘bÞ
TNð‘bÞ� þ ‘

2Bð‘bÞ
TBð‘bÞg, ð49Þ

C ¼ cfNð‘bÞ
TNð‘bÞ þ ‘½Nð‘bÞ

TBð‘bÞ þ Bð‘bÞ
TNð‘bÞ� þ ‘

2Bð‘bÞ
TBð‘bÞg, (50)

K ¼
Xn

j¼1

2EI

Z ‘p

0

DT
j Dj dxþ 2EbIb

Z ‘b

‘p

DT
j Dj dx�

h231ð2tb þ tpÞ
2Ap

b33

Z ‘p

0

DT
j Dj dx

þ k½Nð‘bÞ
TNð‘bÞ þ ‘ðNð‘bÞ

TBð‘bÞ þ Bð‘bÞ
TNð‘bÞÞ þ ‘

2Bð‘bÞ
TBð‘bÞ�, ð51Þ

F ¼
Xn

j¼1

�
h31Vccbð2hþ hpÞ

b33

Z ‘p

0

DT
j dxþ f ½Nð‘bÞ

T
þ ‘Bð‘bÞ

T
�, (52)
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where N is the shape function, B ¼ ðd=dxÞN and D ¼ ðd2=dx2ÞN. The details can be seen in
Ref. [11].
It is assumed that the damping of the cantilever beam is negligible when compared with the

material damping. Thus, only the material damping constructs the damping matrix C, which is to
be measured. In the present study, the global damping matrix C can be written as

C ¼
0 0

0 Cd

" #
¼ ā

0 0

0 Md

" #
þ b̄

0 0

0 Kd

" #
, (53)

where it is assumed that the material damping is described by the proportional damping [18]:

Cd ¼ āMd þ b̄Kd , (54)

in which Md and Kd are the 2� 2 sub-matrices of M and K, respectively, and ā and b̄ are two
constants to be determined from frequency spectrum.
Premultiplying Eq. (54) by UT

d and postmultiplying by Ud , we have

UT
dCdUd ¼ āUT

dMdUd þ b̄UT
dKdUd ¼ āIþ b̄X, (55)

where the orthonormal conditions for the sub-matrices Md and Kd are used. The relationship [10]
among ā; b̄; zr and or can be obtained as

āþ b̄o2
r ¼ 2zror; r ¼ 1; 2; . . . . (56)

By inspecting the frequency spectrum, we could obtain or, oð1Þr and oð2Þr . Then, the damping
ratio zr is calculated for each mode by using Eq. (46). The two constants ā and b̄ in Eq. (56) can be
obtained by using the or and zr of two modes. Finally the matrix Cd of material damping is found.
5. Numerical results

The material properties and geometric dimensions of the piezoceramic bimorph and nickel
beam [12] are listed in Table 1. In the numerical simulations, the voltage Vcc ¼ 100V is applied
from the initial time and the error tolerance 10�9 of Runge–Kutta integration is taken. The initial
conditions Q and _Q at t ¼ 0 are zero for the forced vibrations, which are caused by the applied
voltage but not the initially normal force.

5.1. Determination of material stiffness

By using the characteristic Eq. (37), the first three eigenvalues shown as functions of the tip
mass and the material stiffness are exhibited in Fig. 2. In Fig. 2(a), as the material stiffness
increases, the first eigenvalue increases from 2.7866 to 3.2483 (A to B), the second eigenvalue
increases from 3.6122 to 6.5562 (C to D) and the third eigenvalue increases from 7.0208 to 10.0048
(E to F). In Fig. 2(b), as the tip mass increases, the first eigenvalue decreases from 2.9235 to 1.3556
(B to A), the second eigenvalue decreases from 4.0253 to 3.2536 (D to C) and the third eigenvalue
decreases from 7.6706 to 6.5792 (F to E). It is obvious from Figs. 2(a, b) that the eigenvalues
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Table 1

Material properties and geometric dimensions of the piezoelectric cantilever bimorph beam designed for the measuring

device

Nickel Piezoceramic

Young’s modulus E ðN=m2Þ: Eb ¼ 1:221� 1010 Ep ¼ 6:3� 1010

Density r ðkg=m3Þ: rb ¼ 7500 rp ¼ 7600

h31 (N/C): 7:182� 108

b33 (Vm/C): 6:369� 106

Length ‘ (mm): ‘b ¼ 69:94 ‘p ¼ 8:00
Width w (mm): wb ¼ 3:45 wp ¼ 3:45
Thickness t (mm): tb ¼ 0:50 tp ¼ 0:50
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increase as the material stiffness increases and the tip mass decreases. The material stiffness K
could be calibrated from Fig. 2(a), once the natural frequency o is actually measured by, for
example, an optical microscope, and then to calculate the eigenvalue b2 ¼ p

ffiffiffiffi
o
p

.
For the special case, K !1, the first three eigenvalues are bð1Þ2 ¼ 3:2483, bð2Þ2 ¼ 6:5562 and

bð3Þ2 ¼ 10:0048 which are the same as those of the clamped–clamped beam [10]. The first three
eigenvalues are bð1Þ2 ¼ 1:3556; bð2Þ2 ¼ 3:2536 and bð3Þ2 ¼ 6:5792 for the case M !1.
Since the eigenvalues are distinct for the given M and K, the sensitivity analyses are also

distinct. By using Figs. 2(a) and 2(b), we obtain the derivative of b2 with respect to K and the
derivative of b2 with respect to M, respectively. Thus, the first-order sensitivity analysis of
the eigenvalues can be obtained and the numerical results of the sensitivity analysis are shown in
Fig. 3. It is seen from Fig. 3(a) that the sensitivity of the first eigenvalue with respect to the
material stiffness has the maximum value at start point A and it has the largest change than
the other higher eigenvalues. Thus, the measuring in the material stiffness is preferable by using
the first-mode frequency. From Fig. 3(b), it is seen that the sensitivity of the first eigenvalue with
respect to the tip mass has the smallest change than the other higher eigenvalues.
In the simple case that the two piezoelectric layers are neglected and L � 0, by using the

characteristic equation (39), the first and second resonant frequencies are shown as functions of
the material stiffness and the tip mass in Figs. 4 and 5, respectively. The phenomenon is observed
in Fig. 4 that as the material stiffness increases the frequencies increase, and in Fig. 5 that as the
tip mass increases the frequencies decrease. Considering the special case, M ¼ K ¼ 0, the first and
second eigenvalues are bð1Þ ¼ 1:8751 and bð2Þ ¼ 4:6941, which are the same as those of the
clamped–free beam [10], and can be obtained by reducing Eq. (39) as 1þ cos b cosh b ¼ 0.
In Fig. 4, it can be seen that the values of M and b have the same order in magnitude, but the

value of K may approach infinity. As the special case K !1, Eq. (39) can be reduced to as
sin b cosh b� sinh b cos b ¼ 0, which can be solved for bð1Þ ¼ 3:9266 and bð2Þ ¼ 7:0686 as shown
in Figs. 4(a) and (b), respectively. This is the limit case for kbEbIb=‘

3
b, i.e., the stiffness to be

measured is much larger than that of the cantilever beam. In Fig. 5, the parameter M of the tip
mass is chosen from 0 to 0.20 for practical applications [13,14]. In these ranges, the curves shown
in Figs. 5(a) and (b) are almost linear for the first and second eigenvalues.
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Fig. 2. The first three eigenvalues are shown as functions of the material stiffness and tip mass. (a) The eigenvalues

versus the material stiffness in case of M ¼ 0:1104. (b) The eigenvalue versus the tip mass in case of K ¼ 0.
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The numerical results of sensitivity analysis with respect to the material stiffness (40) and the tip
mass (41) are shown in Figs. 6(a) and (b), respectively. In Fig. 6(a), the sensitivity db=dK for the
special case M ¼ 0 has the maximum at points A and C, and has zeros at points B and D for the
first and second eigenvalues, respectively. In Fig. 6(b), the sensitivity db=dM for the special case
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Fig. 3. The sensitivity analyses of the eigenvalues. (a) The sensitivity with respect to the material stiffness with

M ¼ 0:1104. (b) The sensitivity with respect to the tip mass without the material stiffness.
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K ¼ 0 has the zeros at points A and C, and has minimum at points B and D for the first and
second eigenvalues, respectively.
Numerical simulations by the finite element method are presented for the transverse vibrations,

in which five elements with convergent error 10�9 of Runge–Kutta integration are taken and the
constant voltage Vcc ¼ 100V is applied. The transverse vibrations shown in Fig. 7(a) with
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k ¼ 171:6N=m, m ¼ 0:0001kg and f ¼ 0N for different damping can be transformed to their
frequency spectrum by using the fast Fourier transform (FFT) as shown in Fig. 7(b) for the first
three modes. From Fig. 7(b), we can obtain o1 ¼ 110Hz. With the dimensionless frequency

o ¼ 2po1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rbAb‘b

4=p4EbIb

p
¼ 0:99 and the eigenvalue b2 ¼ p

ffiffiffiffi
o
p
¼ 3:12, we calibrate the
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dimensionless material stiffness K ¼ 33 from Fig. 2(a), and calculate the measured material
stiffness 168:8N=m. It is found that the error is 1.63%.

5.2. Determination of material damping

The transverse vibrations and their frequency spectrum are shown in Figs. 7(a) and (b),
respectively. It is found that the amplitudes and the spectrum decrease by increasing the damping.
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Since there are two constants ā and b̄ in Eq. (56) to be determined, it at least needs two modes
of oð1Þr ;o

ð2Þ
r and or from Fig. 8 to obtain z1 and z2 by using Eq. (46). From the practical

calculation, we obtain from Eq. (56) the two constants ā ¼ 10:06 and b̄ ¼ 4:7E� 6, and by using
Eq. (54) we obtain the damping matrix as

Cd ¼ 10:06Md þ 4:7E� 6Kd . (57)
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Fig. 7. (a) The transverse vibrations and (b) the spectrum with k ¼ 171:6N=m, m ¼ 0:0001kg and f ¼ 0N for different

dampers: c ¼ 0Ns=m�, c ¼ 0:04Ns=m � � � and c ¼ 0:08Ns=m � � �, and a constant voltage Vcc ¼ 100V.
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Consequentially, the measured damping coefficient is 0.0404Ns/m, and the error is about 2.0%.
The other different damper coefficients can be obtained in the same way and shown in Table 2,
where all the errors are less than 3.5%.
6. Conclusions

The triple-layer piezoelectric cantilever bimorph beam is successfully formulated based on the
general concept of the constitutive laws of piezoelectric materials and the introduction of kinetic
and strain energies in Hamilton’s principle. In this paper, the method to measure material
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Table 2

Material damping coefficients c, damping ratios z1 and z2, proportionality constants ā and b̄, the calculated damping

coefficients c0 and the errors

c ðNs=mÞ z1 z2 ā b̄ c0 ðNs=mÞ Error (%)

0.01 0.0345 0.0164 7.46 1:01E� 6 0.0101 1.0

0.02 0.0458 0.0206 10.05 2:21E� 6 0.0204 2.0

0.04 0.0459 0.0207 10.06 4:72E� 6 0.0406 2.0

0.06 0.0464 0.0228 10.90 7:40E� 6 0.0619 3.2

0.08 0.0687 0.0312 14.99 9:80E� 6 0.0827 3.4
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viscoelasticity is proposed. The analytical model could predict the material stiffness from the
measurement of the resonant frequencies, and the damping coefficient from the spectrum. The
examples, showing the procedures of determining these coefficients, are provided. From the
sensitivity analyses, the measuring in material stiffness is preferable by using the first-mode
frequency.
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Appendix A

The coefficients of the shape function (36) of the piezoelectric cantilever bimorph beam are

A1 ¼ � C1

¼ A2
sin b2m

þðcos b1m
� � cosh b1m

�Þðsin b1m
� þ sinhb1m

�Þ

ð2� 2 cos b1m� coshb1m�Þðcos b1m� � coshb1m�Þ

8>><
>>:

þ

�
b2
b1

cos b2m
þðsin2 b1m

� � sinh2 b1m
� � ð2� 2 cos b1m

� coshb1m
�ÞÞ

ð2� 2 cosb1m� cosh b1m�Þðcos b1m� � cosh b1m�Þ

9>>=
>>;

þ B2
cos b2m

þðcos b1m
� � coshb1m

�Þðsinb1m
� þ sinhb1m

�Þ

ð2� 2 cos b1m� coshb1m�Þðcosb1m� � coshb1m�Þ

8>><
>>:

þ

b2
b1

sin b2m
þðsin2 b1m

� � sinh2 b1m
� � ð2� 2 cos b1m

� coshb1m
�ÞÞ

ð2� 2 cos b1m� coshb1m�Þðcos b1m� � coshb1m�Þ

9>>=
>>;

þ C2
sinhb2m

þðcos b1m
� � coshb1m

�Þðsin b1m
� þ sinh b1m

�Þ

ð2� 2 cos b1m� coshb1m�Þðcos b1m� � coshb1m�Þ

8>><
>>:

þ

�
b2
b1

cosh b2m
þðsin2 b1m

� � sinh2 b1m
� � ð2� 2 cos b1m

� coshb1m
�ÞÞ

ð2� 2 cos b1m� coshb1m�Þðcos b1m� � coshb1m�Þ

9>>=
>>;

þD2
coshb2m

þðcosb1m
� � coshb1m

�Þðsinb1m
� þ sinhb1m

�Þ

ð2� 2 cosb1m� cosh b1m�Þðcos b1m� � cosh b1m�Þ

8>><
>>:

þ

�
b2
b1

sinhb2m
þðsin2 b1m

� � sinh2 b1m
� � ð2� 2 cosb1m

� coshb1m
�ÞÞ

ð2� 2 cosb1m� cosh b1m�Þðcos b1m� � coshb1m�Þ
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>>;, ðA:1Þ
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B1 ¼ �D1

¼ A2

sin b2m
þðcos b1m

� � coshb1m
�Þ �

b2
b1

cosb2m
þðsin b1m

� � sinhb1m
�Þ

ð2� 2 cosb1m� cosh b1m�Þ

2
664

3
775

þ B2

cos b2m
þðcos b1m

� � coshb1m
�Þ þ

b2
b1

sin b2m
þðsin b1m

� � sinhb1m
�Þ

ð2� 2 cos b1m� coshb1m�Þ

2
664

3
775

þ C2

sinhb2m
þðcos b1m

� � coshb1m
�Þ �

b2
b1

coshb2m
þðsin b1m

� � sinhb1m
�Þ

ð2� 2 cos b1m� coshb1m�Þ

2
664

3
775

þD2

coshb2m
þðcosb1m

� � coshb1m
�Þ �

b2
b1

sinhb2m
þðsin b1m

� � sinh b1m
�Þ

ð2� 2 cos b1m� coshb1m�Þ

2
664

3
775. ðA:2Þ
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